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ABSTRACT 
 

The tunnel boring machine (TBM) penetration rate estimation is one of the crucial and 

complex tasks encountered frequently to excavate the mechanical tunnels. Estimating the 

machine penetration rate may reduce the risks related to high capital costs typical for 

excavation operation. Thus establishing a relationship between rock properties and TBM 

penetration rate can be very helpful in estimation of this vital parameter. However, 

establishing relationship between rock properties and TBM penetration rate is not a simple 

task and cannot be done using a simple linear or nonlinear method. Adaptive neuro fuzzy 

inference system based on fuzzy c–means clustering algorithm (ANFIS–FCM) is one of the 

robust artificial intelligence algorithms proved to be very successful in recognition of 

relationships between input and output parameters. The aim of this paper is to show the 

application of ANFIS–FCM in estimation of TBM performance. The model was applied to 

available data given in open source literatures. The results obtained show that the ANFIS–

FCM model can be used successfully for estimation of the TBM performance. 

 

Kewords: adaptive neuro fuzzy inference system; TBM; rock properties; penetration rate 

estimation; fuzzy c–means clustering algorithm. 
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1. INTRODUCTION 
 

The use of tunnel boring machines (TBM) for tunneling project has been increasing steadily 

for the last 30 years [1]. The TBM performance estimation is one of the crucial and complex 

tasks encountered frequently to excavate the mechanical tunnels. Estimating the machine 

performance may reduce the risks related to high capital costs typical for excavation 
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operation. Researches on the TBM performance include the study of advance rate, 

penetration rate and utilization. Advance rate is the ratio between excavated length and total 

available time. Penetration rate is the ratio of the length of tunnel excavated to the actual 

boring time during a continuous boring activity. Utilization refers to the percentage of the 

shift time that actual boring activity occurs, i.e., it refers to the ratio between actual 

penetration time and total available time in percent [2, 3]. 

Review of the literature shows that many methods of performance estimation and 

modeling for mechanical tunneling using TBM have been suggested by researchers. In this 

paper, the well–known research works are addressed. Aeberli and Wanner [4] studied effects 

of schistosity on TBM performance. McFeat-Smith and Tarkoy [5] presented different 

relations to predict the penetration rate for different types of machines in different geological 

conditions. This model is not generally valid and it has to be recalculated for each new 

project. Cassinelli, Cina [6] used a rock structure rating system for correlation with TBM 

performance. Nelson [7] studied TBM performance at several tunneling projects mainly in 

sedimentary rock formations by comparing the instantaneous penetration rate achieved with 

different rock properties. Sanio [8] developed a model to estimate the penetration rate 

indirectly. He pointed out that the ratio between the penetration rate perpendicular to the 

bedding and parallel to the bedding is equal to the ratio of the point load indices 

perpendicular and parallel to the bedding planes. Tarkoy [9] developed an empirical 

relationship between total hardness and TBM rate of penetration. Barton [10, 11] reviewed a 

wide range of TBM tunnels to establish the database for estimating penetration rate, 

utilization and advance rate. The Norwegian Institute of Technology (NTNU) has developed 

a comprehensive empirical performance estimation model that considers rock mass and 

intact rock properties as well as machine parameters [12, 13]. In the model, the machine 

specifications (including cutter size, type and number, machine thrust and torque 

requirements) along with laboratory measured indices, (drilling rate index, brittleness index, 

and cutter life index), and rock fracture data, are used to estimate the penetration rate [14]. 

Rostami and Ozdemir [15, 16] improved this model theoretically by estimating cutting 

forces as a function of intact rock properties, including tensile strength and uniaxial 

compressive of rock, and the cutter geometry. Yagiz and Ozdemir [17] and Yagiz [18] 

modified the CSM model by adding brittleness of intact rock and fracture properties of rock 

masses as indices into the model. Moradi and Farsangi [19] estimated the advance rate in 

rock TBM tunneling using the risk matrix method. 

Besides these theoretical and empirical models, soft computing methods have been used 

to predict the rate of penetration. Grima, Bruines [20] used neuro–fuzzy methods to model 

the performance of TBM. Benardos and Kaliampakos [21, 22] utilized artificial neural 

networks for TBM performance prediction. Zhao, Gong [23] introduced a neural network–

based model to predict TBM performance. Acaroglu, Ozdemir [24] introduced a fuzzy logic 

model to predict specific energy requirement for TBM performance prediction. In another 

attempt by Yagiz [25], two nonlinear prediction tools (artificial neural networks and non–

linear multiple regression) presented for the estimation of TBM performance. Torabi, 

Shirazi [3] two main elements of the TBM performance including the rate of penetration and 

utilization factor investigated using artificial neural network and statistical package for 

social sciences. Yagiz and Karahan [26] predicted the hard–rock TBM penetration rate using 

the particle swarm optimization (PSO) technique.  
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In this paper, a new approach for data analysis named Adaptive neuro fuzzy inference 

system based on fuzzy c–means clustering algorithm (ANFIS–FCM) to estimate of TBM 

performance is demonstrated. In this model, uniaxial compressive strength (UCS), planes of 

weakness (DPW), alpha angle (α) and intact rock brittleness (BI) were utilized as the input 

parameters, while the rate of penetration was the output parameter. The estimation abilities 

offered using ANFIS–FCM is presented by using field data in open source literatures.  

 

 

2. ADAPTIVE NETWORK–BASED FUZZY INFERENCE SYSTEM 
 

A fuzzy inference system can model the qualitative aspects of human knowledge and 

reasoning processes without employing precise quantitative analyses. Neural networks 

(NNs) are information–processing programs inspired by mammalian brain processes. NN 

are composed of a number of interconnected processing elements analogous to neurons. The 

training algorithm inputs to the NNs a set of input data and checks the NN output desired 

result. Combining NNs with fuzzy logic (FL) has been shown to emulate the human process 

of expert decision–making reasonably. In traditional NNs, only weight values change during 

learning, thus the learning ability of NNs is combined with the inference mechanism of the 

FL for a neuro–fuzzy decision–making system [27]. 

An adaptive neural network is a network structure consisting of several nodes connected 

through directional links. Each node is characterized by a node function with fixed or 

adjustable parameters. Once the fuzzy inference system (FIS) is initialized, NN algorithms 

can be utilized to determine the unknown parameters (premise and consequent parameters of 

the rules) minimizing the error measure, as conventionally defined for each variable of the 

system. Due to this optimization procedure the system is called adaptive [28].  

The architecture of ANFIS consists of five layers, and a brief introduction of the model is 

as follows. 

Layer 1: each node i in this layer generates a membership grades of a linguistic label. For 

instance, the node function of the ith node might be: 
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where, x is the input to node i, and Ai is the linguistic label (small, large, …) associated 

with this node; and  , ,i i iV b  is the parameter set that changes the shapes of the MF. 

Parameters in this layer are referred to as the "premise parameters". 

Layer 2: Each node in this layer calculates the "firing strength" of each rule via 

multiplication: 

 
2 ( ). ( ) 1,2i i Ai BiQ W x y i     (2) 

 

Layer 3: The ith node of this layer calculates the ratio of the ith rule's firing strength to the 

sum of all rules’ firing strengths: 
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For convenience, outputs of this layer will be called "normalized firing" strengths. 

Layer 4: Every node i in this layer is a node function: 

 
4 ( )i i i i i i iQ W f W p x q y r     (4) 

 

where, iW  is the output of layer 3. Parameters in this layer will be referred to as 

"consequent parameters". 

Layer 5: The single node in this layer is a circle node labeled R that computes the 

"overall output" as the summation of all incoming signals: 
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Also, in this study, FCM is utilized to identify the antecedent MFs. 

 

2.1 Fuzzy c–means clustering method 

The FCM is a data clustering algorithm introduced by Bezdek [29] in which each data point 

belongs to a cluster to a degree specified by a membership grade. FCM partitions a 

collection of n vector , 1,2,...,iX i n ,  into C fuzzy groups, and finds a cluster center in 

each group such that a cost function of dissimilarity measure is minimized. The stages of 

FCM algorithm are therefore, first described in brief. At first, the cluster centers 

, 1,2,...,ic i C  randomly from the n points  1 2 3, , ,..., nX X X X is chosen. After that the 

membership matrix U using the following equation is computed: 
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where, 
ij i jd c x   is the Euclidean distance between ith cluster center and jth data 

point, and m is the fuzziness index. Then, the cost function according to the following 

equation is computed. The process is stopped if it is below a certain threshold. 
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In final step, a new c fuzzy cluster centers , 1,2,...,ic i C  using the following equation 

is computed: 
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3. INPUT/ OUTPUT DATA SPACE 
 

The main scope of this work is to implement the above methodology in the problem of TBM 

penetration rate estimation. Dataset applied in this study for determining the relationship 

among the set of input and output variables are gathered from open source literature [30]. 

The database composed of actual measured TBM penetration rate and rock properties were 

established using the data collected from one hard rock TBM tunnel (the Queens Water 

Tunnel # 3, Stage 2) about 7.5 km long, New York City, USA. Intact rock properties were 

obtained from laboratory studies conducted at the Earth Mechanics Institute (EMI) in the 

Colorado School of Mines, CO, USA. In this study, UCS, planes of weakness (DPW), alpha 

angle (α) and intact rock brittleness (BI) were utilized as the input parameters, while the rate 

of penetration was the output parameter. Partial dataset used in this study are presents in 

Table 1. Also, Table 2 shows statistical description of datasets used in this study.  

 
Table 1: Partial dataset used in this study [30] 

Tunnel 

stations 

(m) 

Input parameters Output parameter 

Type of rock and descriptions UCS 

(MPa) 

BI 

(kN/mm) 

DPW 

(m) 

Alpha angle 

(degrees) 

Penetration rate 

(m/h) 

929 168.3 58 1.6 41 2.37 
Granitoid (felsic) gneiss and 

orthogneiss 

989 174.1 58 2 35 2.34 
Mafic-to-mesocratic 

orthogneiss 

1021 177.9 58 0.4 61 2.9 
Granitoid (felsic) gneiss and 

orthogneiss 

1027 180.7 57 0.2 55 3.04 
Granitoid (felsic) gneiss and 

orthogneiss 

1045 184.1 57 0.4 49 3.07 
Granitoid (felsic) gneiss and 

orthogneiss 

 

 
Table 2: Statistical description of dataset utilized for construction of models 

Parameter Min Max Average 

UCS (MPa) 118.3 199.7 149.89 

BI (kN/mm) 25 58 34.64 

DPW (m) 0.05 2 1.02 

Alpha angle (degrees) 2 89 44.57 

Penetration rate (m/h) 1.27 3.07 2.05 
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4. DATA PROCESSING 
 

To start the training, inputs and output data should be normalized for increasing the 

efficiency of networks in recognition of the relationships between inputs and output data. 

Normalization is also really helpful in increasing the accuracy of prediction and scaling the 

data to minimize the biasing of the networks. Data normalization can also reduce the 

consuming time of training. It is especially useful for modeling those applications where 

input data are in different scales [31, 32]. There are many normalization techniques 

conventionally used to scale up the data including Z–Score normalization, Min–Max 

normalization, sigmoid normalization, statistical column normalization, etc. However, for 

the purpose of this study, Min–Max normalization method was used. This was due to the 

capability of Min–Max normalization in maintaining the variation of each feature after 

normalization. Beside, this normalization method can preserve all of the relationships in the 

data [32]. Min–Max normalization equation is expressed as below: 
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max min

M

x x
x

x x





 (9) 

 

where x is the original value of the dataset, xM is the mapped value, and xmax (xmin) denotes 

the maximum (minimum) raw input values, respectively.  

In addition to the normalization, mean square error (MSE) and coefficient of 

determination (R2) are two conventional criteria considered to assess the efficiency of the 

networks. The MSE is calculated using the following equation: 
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where tk be the actual value and ˆ
kt be the predicted value of the kth observation and n is 

the number of samples used for training or testing the network. MSE is routinely used as a 

criterion to show the discrepancy between the measured and estimated values of the 

network. Coefficient of determination,R2, is also calculated as 
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R2 is widely used as a representation of the initial uncertainty of the model. The best 

network model which is unlikely to build, would have MSE=0 and R2 =1. 
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5. RESULTS AND DISCUSSION 
 

In a conventional fuzzy inference system, the number of rules is decided by an expert who is 

familiar with the target system to be modeled. In ANFIS simulation, however, no expert is 

available and the number of membership functions (MFs) assigned to each input variable is 

chosen empirically, that is, by plotting the data sets and examining them visually, or simply 

by trial and error. For data sets with more than three inputs, visualization techniques are not 

very effective and most of the time it must be relied on trial and error. Generally, it becomes 

very difficult to describe the rules manually in order to reach the precision needed with the 

minimized number of membership functions (MFs), when the number of rules are larger 

than 3. Therefore, an automatic model identification method becomes a must, which is often 

realized by means of a training set of input–output pairs (Jang 1993; Jang et al. 1997; [33, 

34]).  

In this study, ANFIS–FCM model was utilized to build a prediction model for the 

estimation of TBM penetration rate from available data, using MATLAB environment. Fig. 

1 shows the fuzzy architecture of ANFIS–FCM model for the estimation of TBM 

performance. A dataset that includes 153 data points was employed in current study, while 

122 data points (80%) were utilized for constructing the model and the remainder data points 

(31 data points) were utilized for model performance evaluation. The specifications of the 

ANFIS–FCM model are illustrated in Table 3. 

 

 
Figure 1. The architecture of ANFIS–FCM model 

 
Table 3: Specifications of the ANFIS–FCM model 

Parameter Description 

Membership function type Gaussian 

Output membership function Linear 

Number of nodes 57 

Number of linear parameters 25 

Number of nonlinear parameters 40 

Total number of parameters 65 

Number of training data pairs 122 

Number of testing data pairs 31 

Number of fuzzy rules 5 

 

Fig. 2 shows the membership functions of the input parameters for ANFIS–FCM model. 

The numbers of rules achieved for the ANFIS–FCM model are 5. 
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Figure 2. Membership functions of the ANFIS–FCM model 

 

A comparison between estimated values of penetration rate by the ANFIS–FCM model 

and measured values for 153 data sets at training and testing phases is shown in Fig. 3. As 

shown in Fig. 3, the results of the ANFIS–FCM model in comparison with actual data show 

a good precision of the ANFIS–FCM model.  
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(a) 

 

 
(b) 

Figure 3. Comparison between measured and estimated penetration rate for a) training datasets, 

b) testing datasets 

 

Furthermore, a correlation between estimated values of penetration rate by the ANFIS–

FCM model and measured values for 153 data sets at training and testing phases is shown in 

Fig. 4. 

Also, performance analysis of the ANFIS–FCM model for predicting penetration rate is 

shown in Table 4. The performance indices obtained in Table 4 indicate the high 

performance of the ANFIS-FCM model that can be used successfully to the estimation of 

the penetration rate.  
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(a) 

 
(b) 

Figure 4. Correlation between measured and estimated rate of penetration for a) training datasets, 

b) testing datasets 

 
Table 4: Performance analysis of the ANFIS–FCM model for predicting penetration rate 

Description R2 MSE 

ANFIS–FCM model 
Training 0.8310 0.0073 

Testing 0.6765 0.0257 

R² = 0.831
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Eventually, relative error (error percentage) for data point (training and testing samples) 

is assessed and revealed in Fig. 5. Relative error for most data points is located in range of [-

15% 15%], which is an acceptable value. 

 

 
Figure 5. Relative error (error percentage) of ANFIS-FCM model in estimating the penetration 

rate 

 

 

6. CONCLUSION 
 

In this study, the ANFIS–FCM technique has been used for estimating the hard rock TBM 

penetration rate. It is observed that intact and mass rock properties including the UCS, BI, 

DPW and alpha angle have major effect on the TBM penetration. So, the model was 

generated based on relevant properties. The following conclusions can be drawn: 

 The ANFIS–FCM with R2= 0.6765 and MSE= 0.0257 is a reliable system modeling 

technique for predicting penetration rate with highly acceptable degree of accuracy and 

robustness. 

 This study shows that the ANFIS–FCM approach can be applied as a powerful tool for 

modeling of some problems involved in tunnel engineering. 
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